

Table of Contents

Treatment Plant Effluent Monitoring	Page
District Summation	4
Treatment Facility Total Volume Flows	5
Treatment Facility Maximum Instantaneous Flow Rates	6
Treatment Facility Average Flow Rates	7
Graph - Total Volume Flows	8
Graph - Maximum Instantaneous Flow Rates	9
Graph - Average Flow Rates	10
Effluent Monitoring - Treatment Facility	11
Graph - Treatment Facility - Total Coliform	12
Graph - Treatment Facility - Chlorine Residual	13
Effluent Monitoring - Final Discharge	
District Final Effluent - Lab Monitoring Data (Monthly Data)	14
District Final Effluent - Lab Monitoring Data (Semiannual & Annual Data)	15
Graph - District Final Effluent (Total Coliform)	16
Graph - District Final Effluent (Chlorine Residual)	17
Graph - District Final Effluent (Settleable Solids)	18
Graph - District Final Effluent (Dissolved Oxygen)	19
Graph - District Final Effluent (pH)	20
Graph - District Final Effluent (BOD)	21
Graph - District Final Effluent (COD)	22
Graph - District Final Effluent (MBAS)	23
Graph - District Final Effluent (Oil & Grease)	24
Graph - District Final Effluent (TKN)	25
Graph - District Final Effluent (NO3-N)	26
Graph - District Final Effluent (NH3-N)	27
Graph - District Final Effluent (TDS)	28
Graph - District Final Effluent (Chloride)	29
Graph - District Final Effluent (Sodium)	30
Graph - District Final Effluent (Sulfate)	31
Graph - District Final Effluent (Boron)	32
Graph - District Final Effluent (Fluoride)	33
Sludge Monitoring	
Sludge Generation and Disposal Data	34
Graph - Sludge Generation per month	35
Discharge Site - Ground Water Monitoring Wells	
Monitoring Wells Site Map	36
Monitoring Well 1 - Lab Data (Background Well)	37
Monitoring Well 2 - Lab Data	38
Monitoring Well 3 - Lab Data	39
Monitoring Well 4 - Lab Data	40
Monitoring Wells - Lab Data (Annual Testing)	11

Discharge Site - Ground Water Monitoring Wells (con's)	
Graph - All Monitoring Wells - Results (Sulfate)	42
Graph - All Monitoring Wells - Results (Sodium)	43
Graph - All Monitoring Wells - Results (MBAS)	44
Graph - All Monitoring Wells - Results (Chloride)	45
Graph - All Monitoring Wells - Results (TDS)	46
Graph - All Monitoring Wells - Results (TKN)	47
Graph - All Monitoring Wells - Results (NH3-N)	48
Graph - All Monitoring Wells - Results (NO3-N)	49
Graph - All Monitoring Wells - Results (Ground Water Level)	50
Supply Water Monitoring	
Report - Supply Water Samples - March	51
Graph - Supply Water Samples - March	52
Report - Supply Water Samples - September	53
Graph - Supply Water Samples - September	54
Violations	
Final Effluent Disposal Site Constituent Violations	55
Graph – Constituent Violations	56
Treatment Facility Flow Violations	57
Graph - Total Volume Flow Violations	58
Graph – Instantaneous Flow Violations	59
Appendix	
Final Discharge Monitoring (Annual Samples)	Appendix "A"
Discharge Site - Ground Water Monitoring Wells (Annual Samples)	Appendix "B'

Crestline Sanitation District Annual Report Summation 2022

Crestline Sanitation District collected, treated, and discharged 206.8 million gallons of wastewater in 2022. We had a total of 3 flow violations in 2022 in which all 3 were 24 hour violations. These violations were due to storm events which occurred in November and December of 2022 in which the District received 23.13 inches of rain for the year.

Throughout 2022 the Districts' Maintenance Crew systematically televised 6.3 miles of pipe. During 2022 the District Hydroed 20.7 miles of pipeline exceeding the Sanitary Sewer Management Plan (SSMP) mark of 15.2 miles for the year.

The District started construction on the Huston Creek treatment plant in February of 2022. Construction is on schedule so far and is approximately 35 percent completed. The District is installing a redundant clarifier as well as a new solids handling building with two new screw presses.

CSD contracted Sancon to do CIPP and manhole rehab. Sancon slip lined 1109 feet of pipe and also rehabilitated 8 manholes throughout the District.

During the month of November the District conducted smoke testing. The District smoke tested 41,670 feet of line or 7.9 miles. This smoke testing includes customer laterals. Any deficiencies found were repaired at District cost to repair the issue.

An Annual Audit of the District was performed in 2022 by Smith Marion & CO. This accounting firm did a thorough job finding Crestline Sanitation's records to be well prepared, which allowed the audit to be completed in a timely manner and concluded with no findings.

Treatment Facility Total Volume Flows

YEAR:

Site	Huston Plant	Seeley Plant	Cleghorn Plant	Las Flores	Las Flore	es Ponds			
Readings	daily	daily	daily	daily	daily	monthly			
Violations									
Design	0.7 mg/d	0.5 mg/d	0.2 mg/d						
limits	design	design	design						
	total volume	total volume	total volume	total volume	total volume	free			
	month	month	month	to irrigation	to ponds	board			
		All flow	rates in million gall	ons					
	Huston Creek	Seeley Creek	Cleghorn	District Effluent	District Effluent	Flow to ponds			
JANUARY	15.04	7.44	0.060			empty			
FEBRUARY	11.98	4.92	0.091	17.30	0.00	empty			
MARCH	13.25	5.50	0.087	19.34	0.00	empty			
APRIL	11.87	5.07	0.111	17.49	0.00	empty			
MAY	11.16	4.33	0.103	16.07	0.00	empty			
JUNE	10.45	3.56	0.180	15.27	0.00	empty			
JULY	10.96	3.52	0.293	16.11	0.00	empty			
AUGUST	10.55	3.39	0.118	15.16	0.00	empty			
SEPTEMBER	10.86	3.49	0.176	14.76	0.00	empty			
OCTOBER	11.08	3.68	0.034	15.20	0.00	empty			
NOVEMBER	12.96	5.33	0.066	18.11	0.00	empty			
DECEMBER	13.53	5.50	0.054	19.51	0.00	empty			
		2022 Treatment	Facility Total Volu	ıme Flow					
Totals	143.69	55.71	1.37	206.79	0.00				

^{*} Las Flores Total flows are represented by the addition of the Huston Creek, Seeley Creek, Cleghorn and Pilot Rock plant flow as measured as the flow discharges to the district outfall.

Treatment Facility Maximum Instantaneous Flow Rates

Year:

Site	Huston Creek	Seeley Creek	Cleghorn	Las Flores	Las Flores
Reading	daily	daily	daily	daily	daily
Violations					
Design	2.5 mg	1.0 mg	0.4 mg		
limits	maximum	maximum	maximum		
	max flow rate	max flow rate	max flow rate	max flow rate	max flow rate
	month	month	month	month	month
		All flow rates in	million gallons		
	Huston	Seeley	Cleghorn	District Effluent	Flow to ponds
JANUARY	0.840	0.495	0.060	1.486	empty
FEBRUARY	0.660	0.315	0.050	1.064	empty
MARCH	0.810	0.340	0.050	1.208	empty
APRIL	0.670	0.300	0.050	1.061	empty
MAY	0.580	0.315	0.050	0.951	empty
JUNE	0.580	0.300	0.055	0.872	empty
JULY	0.800	0.275	0.190	1,215	empty
AUGUST	0.530	0.255	0.075	0.860	empty
SEPTEMBER	0.890	0.335	0.105	1.312	empty
OCTOBER	0.600	0.285	0.045	0.881	empty
NOVEMBER	1.215	0.640	0.110	2.284	empty
DECEMBER	1.140	0.622	0.240	1.976	empty
	2022 Treatm	ent Facility Maxir	num Instantaneo	us Flow Rate	
	1	Cite Comity Maxii		I I I I I I I I I I I I I I I I I I I	
Maximum	1.215	0.640	0.240	2.284	

Treatment Facility Average Flow Rates

Year:

Site	Huston Creek	Seeley Creek	Cleghorn	Las Flores	Las Flores
Readings	daily	daily	daily	daily	daily
Violations					
Design	0.7 mg/d	0.5 mg/d	0.2 mg/d		
limits	average	average	average		
	average flow	average flow	average flow	average flow	average flow
	month	month	month	month	month
		All flows in millior			
	Huston	Seeley	Cleghorn	District Effluent	Flow to ponds
JANUARY	0.485	0.240	0.002	0.725	empty
FEBRUARY	0.428	0.176	0.003	0.618	empty
MARCH	0.427	0.177	0.003	0.624	empty
APRIL	0.396	0.169	0.004	0.583	empty
MAY	0.360	0.140	0.003	0.519	empty
JUNE	0.348	0.119	0.006	0.493	empty
JULY	0.354	0.113	0.009	0.520	empty
AUGUST	0.340	0.109	0.004	0.489	empty
SEPTEMBER	0.350	0.116	0.006	0.492	empty
OCTOBER	0.358	0.119	0.001	0.493	empty
NOVEMBER	0.432	0.172	0.002	0.604	empty
DECEMBER	0.437	0.177	0.002	0.629	empty
	2022	Freatment Facili	ty Average Flow	/ Rate	
Average	0.393	0.152	0.004	0.566	
- Trolage	0.555	0.132	0.004	0.300	

CRESTLINE SANITATION DISTRICT Treatment Facility Total Volume Flows - 2022

Treatment Facility Maximum Instantaneous Flow Rate - 2022

CRESTLINE SANITATION DISTRICT

Treatment Facility Average Flow Rates - 2022

	2022	Cleghorn	Disinfected Final Effluent	daily		M		Chlorine Residual	l/gm	8.4	10.0	10.1	10.7	6.6	8.0	11.0	χ,	0.4	0.0	7.8	
	Year:	Cleg	Disinfected	2 / week	23 / 100 ml *	O		Total Coilform	MPN	2	2	2	2	2	2	2	7	7 (7 (2	
DISTRICT nt Facilities ages	-	Seeley Creek	Disinfected Final Effluent	daily		Σ		Chlorine Residual	l/gm	7.8	10.7	9.1	11.6	9.8	10.0	8.5	ς. α		- L	5.6 5.6	
CRESTLINE SANITATION DISTRICT ANNUAL REPORT Effluent Monitoring - Treatment Facilities Monthly Median / Averages		Seeley	Disinfected	2 / week	23 / 100 ml *	D		Total Coilform	MPN	2	2	2	2	23	2	2	7 6	7 0	7 (2	
CRESTLIN Effluent M		n Creek	Final Effluent	daily		Σ		Chlorine Residual	l/gm	12:3	17.1	16.6	16.5	17.2	17.9	17.7	16.2) (C	10.0	16.5	
		Huston Cr	Disinfected Final	2 / week	23 / 100 ml *	۵		Total Coilform	MPN	2	2	73	2	2	2	2 5	7	ν ς	7 0	2	
		Site	Sample	Frequency	Requirement	Purpose	Violations	Test	month	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JONE	JULY	AUGUSI	OCTOBED	A COLODERA	DECEMBER	

D - Sample has Effluent / Discharge Limitations

M - Sample has Effleuent Monitoring Requirements

* median does not exceed 23/100 milleters and does not exceed 240/100 milliters in any two consecutive samples

CRESTLINE SANITATION DISTRICT

Treatment Facilites - Final Effluent Total Coliform - 2022

CRESTLINE SANITATION DISTRICT

Treatment Facilities - Final Effluent Chlorine Residual - 2022

D - Sample has Effluent / Discharge Limitations

M - Sample has Effluent Monitoring Requirements

A - Result not an average (only one sample collected per month)
* median does not exceed 23/100 milliters and does not exceed 240/100 milliters in any two consecutive samples

DECEMBER	FEBRUARY MARCH 590.0 136.0 100.0 147.0 0.16 0.54 APRIL MAY JULY AUGUST SEPTEMBER 710 161.0 150.0 180.0 0.36 0.81 A SEPTEMBER OCTOBER NOVEMBER 710 161.0 150.0 180.0 0.36 0.81 A	⋖	∢	<
	The state of the s			

D - Sample has Effluent / Discharge Limitations M - Sample has Effluent Monitoring Requirements

A - For Sample Results see Appendix "A"

District Final Effluent - Median Total Coliform - 2022

District Final Effluent - Average Chlorine Residual - 2022

District Final Effluent - Average Settleable Solids - 2022

District Final Effluent - Average Dissolved Oxygen - 2022

District Final Effluent - pH - 2022

CRESTLINE SANITATION DISTRICT District Final Effluent - Average BOD - 2022

District Final Effluent - Average COD - 2022

CRESTLINE SANITATION DISTRICT District Final Effluent - Average MBAS - 2022

Las Flores

District Final Effluent - Average Oil & Grease - 2022

☐Las Flores

CRESTLINE SANITATION DISTRICTDistrict Final Effluent - Average Kjeldahl Nitrogen - 2022

CRESTLINE SANITATION DISTRICT

District Final Effluent - Average Nitrate Nitrogen -2022

CRESTLINE SANITATION DISTRICTDistrict Final Effluent - Average Ammonia Nitrogen - 2022

CRESTLINE SANITATION DISTRICTDistrict Final Effluent - Semi & Annual Testing - TDS - 2022

CRESTLINE SANITATION DISTRICT
District Final Effluent - Semi & Annual Testing - Chloride - 2022

CRESTLINE SANITATION DISTRICT

District Final Effluent - Semi & Annual Testing - Sulfate - 2022

CRESTLINE SANITATION DISTRICT
District Final Effluent - Semi & Annual Testing - Boron - 2022

CRESTLINE SANITATION DISTRICT District Final Effluent - Semi & Annual Testing - Flouride - 2022

Sludge Monitoring

Year: 2	2022
---------	------

	Sludge Generated	Sludge Removed from Site	Sludge Disposal Method	Sludge Stockpiled on Site
Month				
January	41.3 tons	41.3 Tons	(a)	0.0 Tons
February	50.1 tons	50.1 Tons	(a)	0.0 Tons
March	59.8 tons	59.8 Tons	(a)	0.0 Tons
April	52.2 tons	52.2 Tons	(a)	0.0 Tons
May	62.5 tons	62.5 Tons	(a)	0.0 Tons
June	45.6 tons	45.6 Tons	(a)	0.0 Tons
July	51.3 tons	51.3 Tons	(a)	0.0 Tons
August	57.7 tons	57.7 Tons	(a)	0.0 Tons
September	29.3 tons	29.3 Tons	(a)	0.0 Tons
October	38.4 tons	38.4 Tons	(a)	0.0 Tons
November	40.5 tons	40.5 Tons	(a)	0.0 Tons
December	50.0 tons	50.0 Tons	(a)	0.0 Tons
7074				
TOTAL	578.5 tons	578.6 Tons	(a)	0.0 Tons

 (a) Sludge is collected from Crestline's three treatment plants and Pilot Rock, mixed and pressed at the Huston Creek Treatment Plant. After pressing; the solids are disposed of at One Stop Landscape
 (13024 San Timoteo Canyon Road, Redlands, CA 92373) for composting and eventual recycling.

Note:

Laboratory Analysis of the sludge is not required at this time in recognition that there are no significant industrial waste imputs to the sewer system, and because sludge sampling is required by the disposal facility that accepts the Discharger's sludge. The Regional Board may require qualitative laboratory testing of the sludge if sludge disposal practices and/or locations, as disclosed in the waste discharge requirements, are altered. (Monitoring and Reporting Program 94-57)

CRESTLINE SANITATION DISTRICT Annual Sludge Production per Month - 2022

CRESTLINE SANITATION DISTRICT ANNUAL REPORT

Pasture Monitoring Well Number 1 Laboratory Monitoring Data

Year: 2022

Sample Type A A A A A A A A A A A A A A A A A A A	Frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	F
Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l									- 1		
JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER 142.0 80.0 ND 16.6 300 0.23 0.21 1.80 3155.2 1 1.80 3155.2 1 1.80 3155.2 1 1.80 3155.2 1 1.80 3157.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
FEBRUARY MARCH 142.0 80.0 ND 16.6 300 0.23 0.21 1.80 3155.2 1 APRIL MAY JUNE JULY AUGUST 138.0 77.0 ND 18.6 280 0.22 0.20 1.80 3150.1 1 SEPTEMBER OCTOBER NOVEMBER 138.0 90.0 ND 19.0 290 0.22 0.20 1.80 3147.4 1	Units	mg/i	mg/I	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	feet *	Number
	FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER	138.0 138.0	77.0 90.0	ND ND	18.6 19.0	280 290	0.22	0.20	1.80	3150.1 3147.4	1

A - Monitoring Requirement

^{* =} Depth in feet from surface to groundwater

CRESTLINE SANITATION DISTRICT

Pasture Monitoring Well Number 2 Laboratory Monitoring Data

Year: 2022

Frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	
Sample Type	Α	Α	Α	Α	Α	Α	Α	Α	Α	
Sample	Sulfate	Sodium	MBAS	Chloride	TDS	TKN	NH3-N	NO3-N	Water Depth	Well
Units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	feet *	Number
JANUARY FEBRUARY MARCH APRIL MAY JUNE	133.0 127.0	86.0 84.0	ND ND	124.0 132.0	520 530	0.32	0.30	7.40 7.20	3157.3 3152.4	2
JULY AUGUST SEPTEMBER OCTOBER NOVEMBER	114.0	95.0	ND	128.0	510	0.31	0.29	8.10	3149.8	2
DECEMBER	130.0	100.0	ND	134.0	560	0.28	0.29	8.00	3151.8	2

A - Monitoring Requirement

^{* =} Depth in feet from surface to groundwater

CRESTLINE SANITATION DISTRICT ANNUAL REPORT

Pasture Monitoring Well Number 3 Laboratory Monitoring Data

Year: 2022

Sample Type A A A A A A A A A	Frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	
Units mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	Sample Type	Α	Α	Α	Α	Α	Α				
JANUARY FEBRUARY MARCH APRIL MAY JUNE 125.0 75.0 ND 126.0 510 0.27 0.24 6.30 3148.8 3 JULY AUGUST SEPTEMBER 0CTOBER NOVEMBER				MBAS	Chloride	TDS	TKN	NH3-N	NO3-N	Water Depth	Well
FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER 129.0 74.0 ND 125.0 480 0.32 0.27 6.40 3152.0 3 125.0 APRIL MAY JULY AUGUST SEPTEMBER NOVEMBER 125.0 ND 126.0 510 0.27 0.24 6.30 3148.8 3 125.0 APRIL MAY JULY AUGUST SEPTEMBER NOVEMBER 130.0 84.0 ND 130.0 530 0.30 0.27 6.90 3146.3 3	Units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	feet *	Number
DECEMBER 129.0 89.0 ND 126.0 540 0.30 0.28 6.90 3148.3 3	FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER	125.0 130.0	75.0	ND	126.0	510	0.27	0.24	6.30 6.90	3148.8 3146.3	3 3 3

A - Monitoring Requirement

^{* =} Depth in feet from surface to groundwater

CRESTLINE SANITATION DISTRICT

ANNUAL REPORT

Pasture Monitoring Well Number 4 Laboratory Monitoring Data

Year: 2022

Frequency	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	Quarterly	
Sample Type	Α	Α	Α	Α	Α	Α	Α	Α	Α	
Sample	Sulfate	Sodium	MBAS	Chloride	TDS	TKN	NH3-N	NO3-N	Water Depth	Well
Units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	feet *	Number
JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST	183.0 137.0	50.0 46.0	ND ND	138.0 132.0	530 490	0.42	0.40	4.80 5.73	3112.4 3110.9	4
SEPTEMBER OCTOBER	146.0	50.0	ND	118.0	520	0.32	0.30	4.90	3109.7	4
NOVEMBER DECEMBER	124.0	56.0	ND	164.0	630	0.37	0.34	5.00	3109.4	4

A - Monitoring Requirement

^{* =} Depth in feet from surface to groundwater

CRESTLINE SANITATION DISTRICT

ANNUAL REPORT Pasture Monitoring Wells Labroratory Monitoring Data

Annual Samples

2022

Frequency		Annual		
Sample Type	Α	Α	A	
Sample	Purgable Halocarbons *	Purgable Aromatics	Base/Neutral/Acid Extractable Organics	Well Number
Units	ug/l	ug/l	ug/l	
Month				
September	В	B	В	1
September	В	В	В	2
September	В	В	В	3
September	В	В	В	4

A - Monitoring Requirement

B - For Sample Results see Appendix "B"

^{*} Analysis shall be conducted for those substances included on the EPA list of priority pollutants and all other toxic substances known to be discharged to the Discharger's system using EPA test methods 603, 608, 624, 625 and other appropriate tests for heavy metals.

CRESTLINE SANITATION DISTRICT Pasture Monitoring Well Testing - Sulfate - 2022

CRESTLINE SANITATION DISTRICT Pasture Monitoring Well Testing - Sodium - 2022

CRESTLINE SANITATION DISTRICT

Pasture Monitoring Well Testing - MBAS - 2022

CRESTLINE SANITATION DISTRICT

Pasture Monitoring Well Testing - Chloride - 2022

01/02 des

CRESTLINE SANITATION DISTRICT Pasture Monitoring Well Testing - TDS - 2022

47

CRESTLINE SANITATION DISTRICT

Pasture Monitoring Well Testing - TKN - 2022

01/02 des

CRESTLINE SANITATION DISTRICTPasture Monitoring Well Testing - NH3-N - 2022

CRESTLINE SANITATION DISTRICT Pasture Monitoring Well Testing - NO3-N - 2022

CRESTLINE SANITATION DISTRICT

Pasture Monitoring Well Testing - Elevation of Water Depth - 2022

		CRESI Semi Annu	LINE SANIT ial Supply W	CRESTLINE SANITATION DISTRICT Semi Annual Supply Water Monitoring Data	rici ing Data			Year:	2022
		Frequency	Semi- Annual	Semi- Annual	Semi- Annual	Semi- Annual			
		Violations							
	Sample	Sample Type	Monitor	Monitor	Monitor	Monitor	Total	Local	Purchased
		Maximum					Flow	Water	Water
	Dates	Mean/Minimum					£		
		Median					© M		
			TDS	Chloride	Sodium	Sulfate			
Crestline Sanitation District	3/12/2020	MG/L	590.0	136.0	100.0	147.0	111.91		
(Final Effluent)		POUNDS	550,664	126,933	93,333	137,199			
Crestline Lake Arrowhead	3/10/2020	MG/L	400	106.0	70.0	106.0	7.84		
Water Agency (Silverwood)		POUNDS	26,154	6,931	4,577	6,931			
Crestline Village	3/10/2020	MG/L	290	58.0	43.0	71.5	93.57	45.29	48.28
Water District		POUNDS	226,308	45,262	33,556	55,797			
Valley of Enchantment	3/17/2020	MG/L	320	70.6	53.0	80.0	28.06	6.20	21.86
Mutual Water Company		POUNDS	74,887	16,522	12,403	18,722			
Calculated Constituent		MG/L	303.2	63.6	46.8	75.4	129.5		
Concentrations		POUNDS	327,349	68,714	50,536	81,449			
		and		deret de CONTRACTOR DE L'ACTOR DE					
	"CALCULATED collected from the	ED CONSTITUEN n the three water	T CONCENTE purveyors conf	ATIONS" abov	CONSTITUENT CONCENTRATIONS" above, were mathematically calculated on samples three water purveyors contributing to the sewer system.	matically calcu	lated on sam	səldi	
	Samples co	Samples collected in March	ë		Flow Dates : October 1, 2021 thru March 31, 2022	tober 1, 2021	thru March	31, 2022	
	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAM								1

CRESTLINE SANITATION DISTRICT Supply Water Testing - March, 2022

		CRESTLINE SANITATION DISTRICT Semi Annual Supply Water Monitoring Data	CRESTLINE SANITATION DISTRICT if Annual Supply Water Monitoring	TON DISTR	ng Data			>	2000
								ו במ	
		Frequency	Semi- Annual	Semi- Annual	Semi- Annual	Semi- Annual			
		Violations							
	Sample	Sample type	Monitor	Monitor	Monitor	Monitor	Total	Local	Purchased
		Maximum					FIOW	Water	Water
	Dates	Mean/Min.					٤		
		Median					5		
			TDS	Chloride	Sodium	Sulfate			
Crestline Sanitation District	09/08/22	MG/L	710.0	161.0	150.0	180.0	94.37		
(Final Effluent)		POUNDS	558,803	126,714	118,057	141,668			
Crestline Lake Arrowhead	09/07/22	MG/L	390.0	87.0	70.0	103.0	94.97		
Water Agency (Silverwood)		POUNDS	308,899	68,908	55,443	81,581			
Crestline VIIIage	09/07/22	MG/L	320.0	64.2	51.0	81.0	195.73	120.48	75.25
Water District		POUNDS	522,364	104,799	83,252	132,223			
Valley of Enchantment	00/10/00	NC/	360.0	72.8	0.10	0.00	00 00	2 40	24.74
Mutual Water Company		POUNDS	89.772	18.154	15.211	22.942			
Calculated Constituent		MG/L	256.3	54.4	39.9	45.5	157.8	PONTO-CHARGE STREET	and in Control of the
Concentrations		POUNDS	337,304	71,593	52,510	59,880			
	"CALCULATED	"CALCULATED CONSTITUENT CONCENTRATIONS" above, were mathematically calculated on samples collected from the three water purveyors contributing to the sewer system.	CONCENTRA veyors contril	TIONS" abov	e, were math	ematically cal	culated on s	amples	
	Samples coll	Samples collected in SEPTEMBER	MBER		Flow Dates:	Flow Dates : April 1, 2022 thru September 30, 2022	thru Septer	nber 30, 20%	2

CRESTLINE SANITATION DISTRICT Supply Water Testing - September, 2022

_		_									 												
		2022	monthly		M				NH3-N	mg/l						,	•			•		•	0
		Year	monthly		M				NO3-N	l/gm		,	ı	1		1	,					•	0
			monthly		M				TKN	l/gm				,			ı			,	1	1	0
	olations	Andreas of the Control of the Contro	2 month		M			S IIO	Grease	l/gm			ı	1	,							ı	0
DISTRICT	ANNUAL REPORT Final Effluent Disposal Site (Las Flores) Constituent Violations		2 month		D/M	2.0	1.0		MBAS	l/gm			1	,	,	,							0
IQ NOI	oRT ires) Cons		2 month		M				СОБ	l/gm		,		1		1		1				,	0
CRESTLINE SANITATION	ANNUAL REPORT al Site (Las Flores)		2 month		D/M	45.0	30.0		ВОБ	mg/l			1			,	ı	1	1		1	,	0
LINE	ANN sposal Sit		weekly		D/M	6 >	9 <		됩	H.			1		,		,	•			•		0
CREST	ffluent Di		weekly		D/M		>1		0.0	mg/l		1	,			,	,				1		0
	Final		weekly		D/M	0.5 ml/l		Settleable	Solids	I/Im	,	•		1	•		,	•	,				0
			2 week		D/M		23.0 *	Total	Coliform	MPN	·		ı	,		,	1	,		,	1	1	0
			Frequency	Violations	Sample Type	Maximum	Mean/Min.*				January	February	March	April	May	June	July	August	September	October	November	December	Year Total

D - Has Effluent / Discharge Limitations

M - Has Effluent Monitoring Requirements

CRESTLINE SANITATION DISTRICT Final Effluent Constituent Violations - 2022

CRESTLINE SANITATION DISTRICT

ANNUAL REPORT

Treatment Facilities Flow Violations

Year: 2022

mum
mg
aneou ak
oeak
tions

CRESTLINE SANITATION DISTRICT

Treatment Facility Design Capacity Flow Violations - 2022

CRESTLINE SANITATION DISTRICT

Treatment Facility Instantaneous Flow Violations - 2022

CRESTLINE SANITATION DISTRICT ANNUAL REPORT

APPENDIX "A"

Sample Results
Las Flores Stand Pipe
District Final Effluent

Annual Testing

Tests Results for:
Purgable Organics
Base / Neutral / Acid Extractable Organics
Heavy Metals

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Annual Testing Outfall 2022

Project Manager: Ron Scriven

Reported: 09/13/22 09:19

Conventional Chemistry Parameters by APHA/EPA Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
L.F09-01-A.B.C.D.E.F. (2209019-01) Liquid	Sampled: 09/01/	22 10:15 Re	ceived: 09	/01/22 13:50)				
Phenolics	ND	0.0500	mg/L	1	B2I0623	09/01/22	09/01/22 18:45	SM 5530 B/C	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Annual Testing Outfall 2022

Project Manager: Ron Scriven

Reported: 09/13/22 09:19

Metals by EPA 200 Series Methods

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
L.F09-01-A.B.C.D.E.F. (2209019-01) Liquid	Sampled: 09/01/	22 10:15 R	eceived: 09	01/22 13:50	,				
Silver	ND	0.030	mg/L	1	B210121	09/01/22	09/01/22 19:16	EPA 200.7	
Cadmium	ND	0.011		11	**	"	•	11	
Chromium	ND	0.039		(14)		**	**	**	
Copper	ND	0.050				"	**	,	
Nickel	ND	0.026	н		**	н	**	**	
Lead	ND	0.039	n	и		**	•	11	
Zinc	0.047	0.020			**	"		**	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Annual Testing Outfall 2022

Project Manager: Ron Scriven

Reported: 09/13/22 09:19

Volatile Organics by EPA Method 624.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
L.F09-01-A.B.C.D.E.F. (2209019-01) Liquid	Sampled: 09/01	/22 10:15 Rec	reived: 09	/01/22 13:5	0				P-0
Surrogate: Dibromofluoromethane		96.1 %	86-	118	B2I0201	09/02/22	09/02/22 10:56	EPA 624.1	
Surrogate: Toluene-d8		94.7%	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		86.5 %	86-	115	"	"		"	
Acrolein	ND	5.0	**		"		•	**	
Acrylonitrile	ND	2.0			**		*		
Benzene	ND	1.0		и	"	"	•		
Bromodichloromethane	11	1.0	n			**	**		
Bromoform	ND	1.0		11		н	•		
Bromomethane	ND	1.0	n	11		0	**		
Carbon tetrachloride	ND	1.0		,,		,,	**		
Chlorobenzene	ND	1.0		v	**	и	n	*	
Chloroethane	ND	1.0			"			**	
2-Chloroethylvinyl ether	ND	1.0			•			*	
Chloroform	55	1.0	"		"		,	**	
Chloromethane	ND	1.0	**	11		n	,		
Dibromochloromethane	1.6	1.0	**	11	"	,,	**		
1,2-Dichlorobenzene	ND	1.0	**	**					
,3-Dichlorobenzene	ND	1.0	**	**		"			
,4-Dichlorobenzene	ND	1.0			**	"	"	N	
,1-Dichloroethane	ND	1.0			,,				
,2-Dichloroethane	ND	1.0			"	"	,		
,1-Dichloroethene	ND	1.0			'n	н			
eis-1,2-Dichloroethene	ND	1.0		"	**		,		
rans-1,2-Dichloroethene	ND	1.0	н			,			
,2-Dichloropropane	ND	1.0	,						
,1-Dichloropropene	ND	1.0	n	,,			**		
eis-1,3-Dichloropropene	ND	1.0	n					,,	
rans-1,3-Dichloropropene	ND	1.0		н			<u>"</u>		
Ethylbenzene	ND	1.0		,,					
Methylene chloride	ND	1.0							
,1,2,2-Tetrachloroethane	ND	1.0		,			,,		
Tetrachloroethene	ND	1.0		,,	**		,,		
Toluene	2.4	1.0		,,			,,		
,1,1-Trichloroethane	ND	1.0	**						
1,1,2-Trichloroethane	ND			,,			"	11	
Frichloroethene		1.0						"	
Trichlorofluoromethane	ND ND	1.0			,,				
Vinyl chloride		1.0				"	**		
n,p-Xylene	ND	1.0				"	н		
o-Xylene	ND	1.0			**				
Methyl tert-butyl ether	ND ND	1.0 1.0			**			310	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Annual Testing Outfall 2022

Project Manager: Ron Scriven

Reported: 09/13/22 09:19

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
L.F09-01-A.B.C.D.E.F. (2209019-01) Liquid	Sampled: 09/01	/22 10:15 Rec	eived: 0	9/01/22 13:50					
Surrogate: 2-Fluorophenol		105 %	25	-121	B210704	09/07/22	09/08/22 07:46	EPA 625.1	
Surrogate: Pheno l-d6		92.1 %	24	1-113	"		"	"	
Surrogate: Nitrobenzene-d5		94.3 %	23	-120	"	"	n	"	
Surrogate: 2-Fluorobiphenyl		94.7%	30	-115	"	"	"	<i>n</i>	
Surrogate: 2,4,6-Tribromophenol		117 %	19	-122	"	"	"	"	
Surrogate: Terphenyl-d14		95.5 %	18	-137	"	*	"	"	
Acenaphthene	ND	5.0	n	u	v	10	•	и	
Acenaphthylene	ND	5.0	"	11	н	11			
Anthracene	ND	5.0	"		•	н	•	n	
Benzidine	ND	5.0	*	11			n	н	
Benzo (a) anthracene	ND	5.0	н	н	n			n	
Benzo (b) fluoranthene	ND	5.0	•	0			н		
Benzo (k) fluoranthene	ND	5.0	n			**		"	
Benzo (a) pyrene	ND	5.0		.00	3 H				
Benzo (g,h,i) perylene	ND	5.0	n	n	п	35	n	11	
Butyl benzyl phthalate	ND	5.0				*	н		
Bis(2-chloroethyl)ether	ND	5.0	n			"			
Bis(2-chloroethoxy)methane	ND	5.0	n			**	n	· U	
Bis(2-ethylhexyl)phthalate	ND	5.0	•		11	n		u	
Bis(2-chloroisopropyl)ether	ND	5.0	n			•	n	"	
4-Bromophenyl phenyl ether	ND	5.0	n				n		
2-Chlorophenol	ND	1.0		11	11				
4-Chloro-3-methylphenol	ND	5.0		"	11		n		
2-Chloronaphthalene	ND	5.0	•		**	"	n		
4-Chlorophenyl phenyl ether	ND	5.0	•			"			
Chrysene	ND	5.0	n	11	11	11	н	W	
Dibenz (a,h) anthracene	ND	5.0	-		п	**	n	H.	
1,3-Dichlorobenzene	ND	5.0	-		н	**	n	w	
1,2-Dichlorobenzene	ND	5.0	•		**	11		u u	
1,4-Dichlorobenzene	ND	5.0	n	N	n	**	н	n .	
3,3'-Dichlorobenzidine	ND	5.0	•	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**		н —	
2,4-Dichlorophenol	ND	1.0	•	,		"		n	
Diethyl phthalate	ND	5.0	•	**		"		н	
2,4-Dimethylphenol	ND	1.0			n	11	н.	n e	
Dimethyl phthalate	ND	5.0	•					an .	
Di-n-butyl phthalate	ND	5.0	•		н	"			
2,4-Dinitrophenol	ND	1.0				ii			
2,4-Dinitrotoluene	ND	5.0		"	n	11	н		
2,6-Dinitrotoluene	ND	5.0			n	**			
Di-n-octyl phthalate	ND	5.0	**			n			
1,2-Diphenylhydrazine	ND	5.0			п	"		**	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Annual Testing Outfall 2022

Project Manager: Ron Scriven

Reported: 09/13/22 09:19

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
L.F09-01-A.B.C.D.E.F. (2209019-01) Liquid	Sampled: 09/01/2	22 10:15 Re	ceived: 09	/01/22 13:50)				
Fluoranthene	ND	5.0	μg/L	1	B210704	09/07/22	09/08/22 07:46	EPA 625.1	
Fluorene	ND	5.0	н	**	11		"	"	
Hexachlorobenzene	ND	5.0		11					
Hexachlorobutadiene	ND	5.0		11	n	н		n .	
Hexachlorocyclopentadiene	ND	5.0		н	11				
Hexachloroethane	ND	5.0	n	H	"				
Indeno (1,2,3-cd) pyrene	ND	5.0			"				
Isophorone	ND	5.0	•	**	**	**		**	
2-Methyl-4,6-dinitrophenol	ND	5.0	••	14		**		,,	
Naphthalene	ND	5.0		н		"		,,	
Nitrobenzene	ND	5.0	n	ж		н	,,	,,	
2-Nitrophenol	ND	1.0	n		11		**	**	
4-Nitrophenol	ND	1.0	n	н	11	11	**	"	
N-Nitrosodimethylamine	ND	5.0	,,	"		,,			
Diphenylamine	ND	5.0		"	**			"	
N-Nitrosodi-n-propylamine	ND	5.0	н	,,	**	"			
Pentachlorophenol	ND	1.0	"	,,	**	,,	.,		
Phenanthrene	ND	5.0		n	**	,,			
Phenol	ND	1.0							
Pyrene	ND	5.0	"		11	11		lt .	
1,2,4-Trichlorobenzene	ND	5.0			**		,		
2,4,6-Trichlorophenol	ND	1.0		,,	,,				

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Annual Testing Outfall 2022

Project Manager: Ron Scriven

Reported: 09/13/22 09:19

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID

Sierra Analytical Labs, Inc.

	,									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
L.F09-01-A.B.C.D.E.F. (2209019-01) Liquid	Sampled: 09/01	/22 10:15 Red	ceived: 09	0/01/22 13:50						
Surrogate: o-Terphenyl		64.0 %	60-	-175	B2I1203	09/08/22	09/12/22 12:06	EPA 8015B		
HC < C8	ND	0.010				**		11		
C8 <= HC < C9	0.010	0.010		11	10		н			
C9 <= HC < C10	ND	0.010		11		It	16	**		
C10 <= HC < C11	ND	0.010	n		*	**				
C11 <= HC < C12	ND	0.010	н							
C12 <= HC < C14	0.025	0.010	**			lt*	**			
C14 <= HC < C16	0.015	0.010	n	.11.	**	п	*			
C16 <= HC < C18	0.024	0.010	•		**	**	*	**		
C18 <= HC < C20	0.030	0.010	",		**	"		"		
C20 <= HC < C24	0.055	0.010		n	,,	81	**	•		
C24 <= HC < C28	0.047	0.010	n	10	"			•		
C28 <= HC < C32	0.094	0.010	n		,					
HC >= C32	0.13	0.010	н			"				
Total Petroleum Hydrocarbons (C7-C36)	0.36	0.050		и	,,	"	.11	u		

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Sierra Analytical

26052 Merit Cir. Ste. 105 Laguna Hills CA, 92653 Project: 2209019

Project Number: 2209019

Project Manager: Rick Forsyth

Reported:

09/12/22 15:43

L.F.-09-01-A.B.C.D.E.F. (2209019-01) T222470-01 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Cyanide by SM4500-CN B,C, or E or EPA 9014	1								
Cyanide (total)	ND	0.0050	mg/l	1	2210069	09/07/22	09/09/22	SM 4500-CN C/E	

SunStar Laboratories, Inc.

Joann Marroquin

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Volatile Organics by EPA Method 624.1

Sierra Analytical Labs, Inc.

	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1-09-08 (2209140-01) Water	Sampled: 09/08/22 10:00	Received: 09/0	8/22 14:00						
Surrogate: Dibromofluoromethane		112 %	86-1		B210906	09/09/22	09/09/22 15:21	EPA 624.1	
Surrogate: Toluene-d8		108 %	88-1	10	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		100 %	86-1	15	н	<i>H</i>	"	"	
Acrolein	ND	5.0		**	11	н	n	и	
Acrylonitrile	ND	2.0	"	**		•	"	II .	
Benzene	ND	1.0	**	**	н	"	*	H .	
Bromodichloromethane	ND	1.0	"	11	"			H	
Bromoform	ND	1.0			11			H .	
Bromomethane	ND	1.0	"	"	11	"	"		
Carbon tetrachloride	ND	1.0	"			n	"	w	
Chlorobenzene	ND	1.0		н	Ħ	ж.	н	n	
Chloroethane	ND	1.0		**	**		"	н	
2-Chloroethylvinyl ether	ND	5.0	n				"	n	
Chloroform	ND	1.0	•		**	n	n		
Chloromethane	ND	1.0			**	и	n	и —	
Dibromochloromethane	ND	1.0	"	н	**	н			
,2-Dichlorobenzene	ND	1.0	"	**	**	н			
,3-Dichlorobenzene	ND	1.0	n		**				
,4-Dichlorobenzene	ND	1.0	н	н	11	н	и	,,	
,1-Dichloroethane	ND	1.0	н		"			9	
,2-Dichloroethane	ND	1.0	н	"	**				
,1-Dichloroethene	ND	1.0				n	"	,	
eis-1,2-Dichloroethene	ND	1.0		311	10	**	•	H	
rans-1,2-Dichloroethene	ND	1.0		236	11	**	n		
,2-Dichloropropane	ND	1.0		211					
,1-Dichloropropene	ND	1.0	"	**			n		
eis-1,3-Dichloropropene	ND	1.0	n	**			n	,	
rans-1,3-Dichloropropene	ND	1.0		.,		**			
Ethylbenzene	ND	1.0		,,	"				
Methylene chloride	ND	1.0	n		"	11		,	
1,1,2,2-Tetrachloroethane	ND	1.0	"	,,	,,	,,	,	,	
Tetrachloroethene	ND	1.0		"	"		,		
Toluene	ND	1.0	,,	,,					
1,1,1-Trichloroethane	ND	1.0			н	21	,	,	
1,1,2-Trichloroethane	ND	1.0				11	n		
Frichloroethene	ND	1.0		,,					
Frichlorofluoromethane	ND	1.0		**		**			
Vinyl chloride	ND	1.0			u .	**			
n,p-Xylene	ND	1.0	н		и				
o-Xylene	ND	1.0							
Methyl tert-butyl ether	ND	1.0	,						

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Volatile Organics by EPA Method 624.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-2-09-08 (2209140-02) Water	Sampled: 09/08/22 10:20	Received: 09/08	3/22 14:00		(Sec. 1) 10 10 10 10 10 10 10 10 10 10 10 10 10				
Surrogate: Dibromofluoromethane		115 %	86-1	118	B210906	09/09/22	09/09/22 15:59	EPA 624.1	
Surrogate: Toluene-d8		109 %	88-1	110	"	"	"	n	
Surrogate: 4-Bromofluorobenzene		99.6 %	86-1	115	"	"	"	"	
Acrolein	ND	5.0		11	**			**	
Acrylonitrile	ND	2.0			**	"	n	10	
Benzene	ND	1.0			#	и	×11°		
Bromodichloromethane	ND	1.0	н	n n	п.	n	n	11	
Bromoform	ND	1.0	n	"		и	n	n	
Bromomethane	ND	1.0				"		H	
Carbon tetrachloride	ND	1.0	н	n			n	н	
Chlorobenzene	ND	1.0	n	н		"			
Chloroethane	ND	1.0					,,		
2-Chloroethylvinyl ether	ND	5.0				**	•	**	
Chloroform	ND	1.0			**	"	н		
Chloromethane	ND	1.0		11		41		**	
Dibromochloromethane	ND	1.0			"	**			
1,2-Dichlorobenzene	ND	1.0		**	**	"			
1,3-Dichlorobenzene	ND	1.0		10	11	**			
1,4-Dichlorobenzene	ND	1.0		**	***	,,			
1,1-Dichloroethane	ND	1.0	,	"	**	"	n	,	
1,2-Dichloroethane	ND	1.0		,,			n		
1,1-Dichloroethene	ND	1.0	,,	**		**			
cis-1,2-Dichloroethene	ND	1.0	,	,,	,,	,,			
trans-1,2-Dichloroethene	ND	1.0	,						
1,2-Dichloropropane	ND ND	1.0	,			,			
1,1-Dichloropropene	ND ND							10	
cis-1,3-Dichloropropene		1.0	,,	,			"		
trans-1,3-Dichloropropene	ND	1.0			11	"			
Ethylbenzene	ND	1.0				"			
Methylene chloride	ND	1.0			"	"		"	
	ND	1.0	*		"	"	*	**	
1,1,2,2-Tetrachloroethane	ND	1.0		. "		"	•	•	
Tetrachloroethene	ND	1.0	"	"	116	"	•		
Toluene	ND	1.0	"	n	11	"		**	
1,1,1-Trichloroethane	ND	1.0	"	"	11	w	n		
1,1,2-Trichloroethane	ND	1.0	"	"	"	. "	•		
Trichloroethene	ND	1.0	"		,,				
Trichlorofluoromethane	ND	1.0	"		.11	H	"	11	
Vinyl chloride	ND	1.0	"		"	"		эн :	
m,p-Xylene	ND	1.0	•					11	
o-Xylene	ND	1.0	"	•		"			
Methyl tert-butyl ether	ND	1.0	"					20.2	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Volatile Organics by EPA Method 624.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3-09-08 (2209140-03) Water	Sampled: 09/08/22 10:40	Received: 09/0	8/22 14:00						
Surrogate: Dibromofluoromethane		114 %	86-	118	B210906	09/09/22	09/09/22 16:37	EPA 624.1	
Surrogate: Toluene-d8		109 %	88-1	110	"	"	n	"	
Surrogate: 4-Bromofluorobenzene		98.0 %	86-1	115	*	"	"	"	
Acrolein	ND	5.0	n	D	*	**		841	
Acrylonitrile	ND	2.0	n	v	**	**		***	
Benzene	ND	1.0	n	**		"	0	м	
Bromodichloromethane	ND	1.0	"	W	н		**		
Bromoform	ND	1.0	"						
Bromomethane	ND	1.0	"		"	"			
Carbon tetrachloride	ND	1.0	"	"		**	н	11	
Chlorobenzene	ND	1.0	н	**		"		n	
Chloroethane	ND	1.0		**	11		**		
2-Chloroethylvinyl ether	ND	5.0		***	11	"			
Chloroform	ND	1.0	"		11	**	н	**	
Chloromethane	ND	1.0	n		11	н		"	
Dibromochloromethane	ND	1.0	"		**	**	,,	**	
1,2-Dichlorobenzene	ND	1.0	••		**	**		n n	
1,3-Dichlorobenzene	ND	1.0	•	i i	**		n	11	
1,4-Dichlorobenzene	ND	1.0			,,	"	n		
1,1-Dichloroethane	ND	1.0	n		,,	"		40	
1,2-Dichloroethane	ND	1.0		,,	"	"	,	**	
1,1-Dichloroethene	ND	1.0		n.		n	,	113	
cis-1,2-Dichloroethene	ND	1.0		,,	11	н	,		
trans-1,2-Dichloroethene	ND	1.0	н	.,				,,	
1,2-Dichloropropane	ND	1.0							
1,1-Dichloropropene	ND	1.0	n	16	11				
cis-1,3-Dichloropropene	ND	1.0			"	,,			
trans-1,3-Dichloropropene	ND	1.0	,,		**	,,			
Ethylbenzene	ND			,,	,,				
Methylene chloride	ND ND	1.0	н	,,	"				
1,1,2,2-Tetrachloroethane	ND	1.0		,	,,			н	
Tetrachloroethene	ND ND	1.0		,,	,	"	"		
Toluene	ND ND	1.0					*		
1,1,1-Trichloroethane		1.0				"	*	*	
1,1,2-Trichloroethane	ND	1.0				"	**	"	
Trichloroethene	ND	1.0		"	"		"	•	
Trichlorofluoromethane	ND	1.0				"	*		
	ND	1.0		- "	"	"			
Vinyl chloride	ND	1.0	•	н	n	н	n	"	
m,p-Xylene	ND	1.0	•	•	"	"	**		
o-Xylene	ND	1.0			"	"	*		
Methyl tert-butyl ether	ND	1.0	*	н	"	**	**		

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Volatile Organics by EPA Method 624.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-4-09-08 (2209140-04) Water	Sampled: 09/08/22 11:00	Received: 09/08	3/22 14:00						
Surrogate: Dibromofluoromethane		114 %	86-11	8	B210906	09/09/22	09/09/22 17:14	EPA 624.1	
Surrogate: Toluene-d8		108 %	88-11	0	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.8 %	86-11	5	"	"	n	"	
Acrolein	ND	5.0	n	н	n	u		11	
Acrylonitrile	ND	2.0		"	н				
Benzene	ND	1.0		**		"	n	.,	
Bromodichloromethane	ND	1.0	н		n	"	н	•	
Bromoform	ND	1.0	"	н	h	"	•	11	
Bromomethane	ND	1.0		н	н	**	•		
Carbon tetrachloride	ND	1.0		100		**	n		
Chlorobenzene	ND	1.0			н	н		u	
Chloroethane	ND	1.0	•		н				
2-Chloroethylvinyl ether	ND	5.0	•	11				"	
Chloroform	ND	1.0		"	**		n	W	
Chloromethane	ND	1.0	**		0	"	n		
Dibromochloromethane	ND	1.0				"	n	.11	
1,2-Dichlorobenzene	ND	1.0				**	,		
1,3-Dichlorobenzene	ND	1.0		11		**	0	D.	
1,4-Dichlorobenzene	ND	1.0		10	11	11	n	If .	
1,1-Dichloroethane	ND	1.0	н	,,	,,		"		
1,2-Dichloroethane	ND	1.0	,,			"	"		
1,1-Dichloroethene	ND	1.0	,,				"		
cis-1,2-Dichloroethene	ND	1.0		11	,,				
trans-1,2-Dichloroethene	ND	1.0	,	**	11				
1,2-Dichloropropane	ND	1.0		,,					
1,1-Dichloropropene	ND	1.0	,	11	11	н			
cis-1,3-Dichloropropene	ND	1.0			-11	**		11	
trans-1,3-Dichloropropene	ND	1.0			11			"	
Ethylbenzene	ND	1.0		,,	.,				
Methylene chloride	ND ND				11				
1,1,2,2-Tetrachloroethane	ND ND	1.0			11				
Tetrachloroethene		1.0		,,					
Toluene	ND	1.0	,	.,	,,				
	ND	1.0	,				•		
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND	1.0		,	**				
	ND	1.0			"		n	"	
Trichloroethene Trichlorofluoromethane	ND	1.0		."	•			**	
	ND	1.0	"	"	"	•		"	
Vinyl chloride	ND	1.0	n	11	11	**	•	н	
m,p-Xylene	ND	1.0	n	**		"		n	
o-Xylene	ND	1.0	"	**	**	"	"	•	
Methyl tert-butyl ether	ND	1.0	"	**	**	**		**	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1-09-08 (2209140-01) Water	Sampled: 09/08/22 10:00	Received: 09/08	3/22 14:00						
Surrogate: 2-Fluorophenol		117 %	25-1	21	B2I1301	09/12/22	09/14/22 06:10	EPA 625.1	
Surrogate: Phenol-d6		101 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		113 %	23-1	20	"	"	*	"	
Surrogate: 2-Fluorobiphenyl		112 %	30-1	15	"	n	#	n	
Surrogate: 2,4,6-Tribromophenol		120 %	19-1	22	"	"	"	"	
Surrogate: Terphenyl-d14		114 %	18-1	37	"	"	"	"	
Acenaphthene	ND	5.0	н	**		н			
Acenaphthylene	ND	5.0		"					
Anthracene	ND	5.0		**	**	11			
Benzidine	ND	5.0	n		u	"		11	
Benzo (a) anthracene	ND	5.0	n	U		"	*	и	
Benzo (b) fluoranthene	ND	5.0	м		**	"		n	
Benzo (k) fluoranthene	ND	5.0	,,	u u		**	"		
Benzo (a) pyrene	ND	5.0	,,			31	*	n	
Benzo (g,h,i) perylene	ND	5.0	n	n		31	,,	10	
Butyl benzyl phthalate	ND	5.0	•		**				
Bis(2-chloroethyl)ether	ND	5.0					"		
Bis(2-chloroethoxy)methane	ND	5.0	•		н	н	**	**	
Bis(2-ethylhexyl)phthalate	ND	5.0		11		,,	,,	*	
Bis(2-chloroisopropyl)ether	ND	5.0		"	,,				
4-Bromophenyl phenyl ether	ND	5.0		,,	,,	"	,		
2-Chlorophenol	ND	1.0		,,	u	11	**		
4-Chloro-3-methylphenol	ND	5.0	n	"	,,				
2-Chloronaphthalene	ND	5.0	n	11					
4-Chlorophenyl phenyl ether	ND	5.0		,,					
Chrysene	ND	5.0	n -		n	11			
Dibenz (a,h) anthracene	ND	5.0			19		,	,	
1,3-Dichlorobenzene	ND	5.0					,		
1,2-Dichlorobenzene	ND	5.0		n	,,	"		"	
1,4-Dichlorobenzene	ND	5.0		,,	11			,	
3,3'-Dichlorobenzidine	ND	5.0					,		
2,4-Dichlorophenol	ND	1.0		,,	,,			,	
Diethyl phthalate	ND ND	5.0	**						
2,4-Dimethylphenol	ND	1.0	**		11		,	,	
Dimethyl phthalate	ND ND	5.0	**		11		, i	,	
Di-n-butyl phthalate	ND	5.0	**		,,		- "	,	
2,4-Dinitrophenol	ND	1.0				"		,	
2,4-Dinitrotoluene	ND ND	5.0	**						
2,6-Dinitrotoluene	ND ND		,,	,,		"	,	"	
Di-n-octyl phthalate	ND ND	5.0	,,		,		,	"	
1,2-Diphenylhydrazine		5.0							
1,2-Dipucitymydrazine	ND	5.0	**		**	"		и	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1-09-08 (2209140-01) Water	Sampled: 09/08/22 10:00	Received: 09/08	3/22 14:00						
Fluoranthene	ND	5.0	μg/L	1	B2I1301	09/12/22	09/14/22 06:10	EPA 625.1	
Fluorene	ND	5.0	**		**	"	n	or .	
Hexachlorobenzene	ND	5.0	**		**	••			
Hexachlorobutadiene	ND	5.0	n	10	*	n	N		
Hexachlorocyclopentadiene	ND	5.0	H	II		u		ш	
Hexachloroethane	ND	5.0		n	**	"		и	
Indeno (1,2,3-cd) pyrene	ND	5.0	**	11	**	"	n		
Isophorone	ND	5.0	n	11		**	**		
2-Methyl-4,6-dinitrophenol	ND	5.0	"			,	"	•	
Naphthalene	ND	5.0	**	n	,,	"	n		
Nitrobenzene	ND	5.0	n	**		"	n	**	
2-Nitrophenol	ND	1.0	n	**	11	"	"	н	
4-Nitrophenol	ND	1.0		M.	**	11		**	
N-Nitrosodimethylamine	ND	5.0		**	н		•		
Diphenylamine	ND	5.0	"		0	н	**	u	
N-Nitrosodi-n-propylamine	ND	5.0		н	н	и	н	н	
Pentachlorophenol	ND	1.0				"	•		
Phenanthrene	ND	5.0	•		11	**	•	н	
Phenol	ND	1.0		n		"	n	n =	
Pyrene	ND	5.0	n		n		0	200	
1,2,4-Trichlorobenzene	ND	5.0							
2,4,6-Trichlorophenol	ND	1.0		"	n		•		
MW-2-09-08 (2209140-02) Water	Sampled: 09/08/22 10:20	Received: 09/08	3/22 14:00						
Surrogate: 2-Fluorophenol		82.0 %	25-12	1	B2I1301	09/12/22	09/14/22 06:10	EPA 625.1	
Surrogate: Phenol-d6		61.1 %	24-11	3	"	"	"	"	
Surrogate: Nitrobenzene-d5		85.2 %	23-12		"	n	"	"	
Surrogate: 2-Fluorobiphenyl		86.9 %	30-11		•	"	"	,,	
Surrogate: 2,4,6-Tribromophenol		78.3 %	19-12		"	"	и	"	
Surrogate: Terphenyl-d14		93.1 %	18-13		"	,,	"	"	
Acenaphthene	ND	5.0	н	11	,,	н			
Acenaphthylene	ND	5.0	n		•			.	
Anthracene	ND	5.0	n	"	**	,,		н	
Benzidine	ND	5.0	n	н	"	7	,	n	
Benzo (a) anthracene	ND	5.0	n	"				"	
	ND	5.0	"	**	.,			"	
Benzo (b) fluoranthene			**				•	н	
Benzo (b) fluoranthene Benzo (k) fluoranthene		5.0							
Benzo (k) fluoranthene	ND	5.0 5.0	•	,,	**				
	ND ND	5.0		11	"			n n	
Benzo (k) fluoranthene Benzo (a) pyrene	ND			11 11	"				

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-2-09-08 (2209140-02) Water	Sampled: 09/08/22 10:20	Received: 09/08	3/22 14:00	***************************************			* 19 200 10		
Bis(2-chloroethoxy)methane	ND	5.0	μg/L	1	B2I1301	09/12/22	09/14/22 06:10	EPA 625.1	
Bis(2-ethylhexyl)phthalate	ND	5.0	n	•					
Bis(2-chloroisopropyl)ether	ND	5.0	н		11	"	н	и	
4-Bromophenyl phenyl ether	ND	5.0	n	H	н	н			
2-Chlorophenol	ND	1.0	н	**	H	н		n	
4-Chloro-3-methylphenol	ND	5.0	n	Ð		"			
2-Chloronaphthalene	ND	5.0		н	211			u i	
4-Chlorophenyl phenyl ether	ND	5.0	n	**		n	H	•	
Chrysene	ND	5.0	n	**	•		:nc	и	
Dibenz (a,h) anthracene	ND	5.0	н	**	"			- 12 n	
1,3-Dichlorobenzene	ND	5.0		71	11	"		н	
1,2-Dichlorobenzene	ND	5.0	н	"	**		•	u	
1,4-Dichlorobenzene	ND	5.0	н	**		9	•		
3,3'-Dichlorobenzidine	ND	5.0		**	**		•	W	
2,4-Dichlorophenol	ND	1.0	n	**	•	11	•	н	
Diethyl phthalate	ND	5.0	n	**	"	"	•		
2,4-Dimethylphenol	ND	1.0		**				n	
Dimethyl phthalate	ND	5.0	n	**	**				
Di-n-butyl phthalate	ND	5.0	n	11	11		**	H .	
2,4-Dinitrophenol	ND	1.0	H	11	11	н			
2,4-Dinitrotoluene	ND	5.0	n	**	**	"			
2,6-Dinitrotoluene	ND	5.0			**	н			
Di-n-octyl phthalate	ND	5.0	n	.11	11	н	н	и	
1,2-Diphenylhydrazine	ND	5.0		11	"	Ħ		tr.	
Fluoranthene	ND	5.0	•	**		**			
Fluorene	ND	5.0	,	11	n				
Hexachlorobenzene	ND	5.0	n	**	11	It		n	
Hexachlorobutadiene	ND	5.0	,	•	u	"	•		
Hexachlorocyclopentadiene	ND	5.0	•	**	•	n			
Hexachloroethane	ND	5.0	n	11	"	11	•	н	
Indeno (1,2,3-cd) pyrene	ND	5.0		**	"			•	
Isophorone	ND	5.0	,	**	u	"		н	
2-Methyl-4,6-dinitrophenol	ND	5.0	n		**	,		•	
Naphthalene	ND	5.0	•	н		"		н	
Nitrobenzene	ND	5.0	n	HE			н	n	
2-Nitrophenol	ND	1.0		н		"		•	
4-Nitrophenol	ND	1.0		110		н	n	"	
N-Nitrosodimethylamine	ND	5.0	н	н	н	**	n	H	
Diphenylamine	ND	5.0		**	"		n -	n	
N-Nitrosodi-n-propylamine	ND	5.0			"	**		*	
Pentachlorophenol	ND	1.0		*	**				

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-2-09-08 (2209140-02) Water	Sampled: 09/08/22 10:20	Received: 09/08	3/22 14:00						
Phenanthrene	ND	5.0	μg/L	1	B2I1301	09/12/22	09/14/22 06:10	EPA 625.1	
Phenol	ND	1.0	"	"	,,		H	"	
Pyrene	ND	5.0	n	**			*		
1,2,4-Trichlorobenzene	ND	5.0	n	11	0		**		
2,4,6-Trichlorophenol	ND	1.0		н	71	п	**	н	
MW-3-09-08 (2209140-03) Water	Sampled: 09/08/22 10:40	Received: 09/08	3/22 14:00						
Surrogate: 2-Fluorophenol		89.5 %	25-1	21	B211301	09/12/22	09/14/22 06:10	EPA 625.1	
Surrogate: Phenol-d6		66.1 %	24-1		"	"	"	LFA 025.1	
Surrogate: Nitrobenzene-d5		97.5 %	23-1		"	,,	,,	"	
Surrogate: 2-Fluorobiphenyl		94.4 %	30-1		"	"	,,	н	
Surrogate: 2,4,6-Tribromophenol		87.8 %	19-1		"	"	,,	"	
Surrogate: Terphenyl-d14		95.1 %	18-1		,,	"	"	,,	
Acenaphthene	ND	5.0	"	"	**	*	•		
Acenaphthylene	ND	5.0		11	**	**		**	
Anthracene	ND	5.0		11	11		n	.,	
Benzidine	ND	5.0		11			n		
Benzo (a) anthracene	ND	5.0		н	**			**	
Benzo (b) fluoranthene	ND	5.0		11	11		n	"	
Benzo (k) fluoranthene	ND	5.0	"		.,	,,			
Benzo (a) pyrene	ND	5.0	•		u u				
Benzo (g,h,i) perylene	ND	5.0	n	n	11	,,		,	
Butyl benzyl phthalate	ND	5.0	n		и				
Bis(2-chloroethyl)ether	ND	5.0	и	н	"				
Bis(2-chloroethoxy)methane	ND	5.0	**		и				
Bis(2-ethylhexyl)phthalate	ND	5.0			**	,,		.,	
Bis(2-chloroisopropyl)ether	ND	5.0	n	10	п		n		
4-Bromophenyl phenyl ether	ND	5.0	n		н	"			
2-Chlorophenol	ND	1.0	n					,	
4-Chloro-3-methylphenol	ND	5.0		,	11	"		"	
2-Chloronaphthalene	ND	5.0			n	"			
4-Chlorophenyl phenyl ether	ND	5.0	"			,			
Chrysene	ND	5.0	"		,,			N	
Dibenz (a,h) anthracene	ND	5.0	**	,,	11				
1,3-Dichlorobenzene	ND	5.0	**		,,			ar .	
1,2-Dichlorobenzene	ND	5.0	**				,		
1,4-Dichlorobenzene	ND	5.0	**						
3,3'-Dichlorobenzidine	ND	5.0	**						
2,4-Dichlorophenol	ND	1.0		**					
Diethyl phthalate	ND	5.0		**	11			,,	
2,4-Dimethylphenol	ND	1.0						n n	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-3-09-08 (2209140-03) Water	Sampled: 09/08/22 10:40	Received: 09/08	8/22 14:00						
Dimethyl phthalate	ND	5.0	μg/L	1	B2I1301	09/12/22	09/14/22 06:10	EPA 625.1	
Di-n-butyl phthalate	ND	5.0	n	"	••			311	
2,4-Dinitrophenol	ND	1.0	n	,,		"		11	
2,4-Dinitrotoluene	ND	5.0	"	"	n	**			
2,6-Dinitrotoluene	ND	5.0		"	н	н			
Di-n-octyl phthalate	ND	5.0	•	.,	н	**		**	
1,2-Diphenylhydrazine	ND	5.0	**			"	n	,,	
Fluoranthene	ND	5.0	n	11		**	n		
Fluorene	ND	5.0	н	**				,,	
Hexachlorobenzene	ND	5.0	"		N				
Hexachlorobutadiene	ND	5.0		н	111				
Hexachlorocyclopentadiene	ND	5.0	н	**	11	н			
Hexachloroethane	ND	5.0	n	**	5.NC	н			
Indeno (1,2,3-cd) pyrene	ND	5.0		,,					
Isophorone	ND	5.0	"		,,			н	
2-Methyl-4,6-dinitrophenol	ND	5.0	н		,,		, m	m.	
Naphthalene	ND	5.0	**		"			an .	
Nitrobenzene	ND	5.0	"	,,	**				
2-Nitrophenol	ND	1.0	"	.,	**	**			
4-Nitrophenol	ND	1.0	н	tr	•			- "	
N-Nitrosodimethylamine	ND	5.0			•				
Diphenylamine	ND	5.0			"	"			
N-Nitrosodi-n-propylamine	ND	5.0		**	**				
Pentachlorophenol	ND	1.0	н	11	11		n	11	
Phenanthrene	ND	5.0	н	16	11	"			
Phenol	ND	1.0	,,	**	11		,		
Pyrene	ND	5.0	,	**	8108	н			
1,2,4-Trichlorobenzene	ND	5.0		76	10	н	,		
2,4,6-Trichlorophenol	ND	1.0		"	11				

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-4-09-08 (2209140-04) Water	Sampled: 09/08/22 11:00								
Surrogate: 2-Fluorophenol		82.8 %	25-1	121	B2I1301	09/12/22	09/14/22 06:10	EPA 625.1	
Surrogate: Phenol-d6		60.7 %	24-1	113		"	"	"	
Surrogate: Nitrobenzene-d5		86.6 %	23-1	120	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		78.4 %	30-1	115	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		77.1 %	19-1	122	"	"	"	"	
Surrogate: Terphenyl-d14		124 %	18-1	137	"	"	"	"	
Acenaphthene	ND	5.0	"	н	n	**	n	,,	
Acenaphthylene	ND	5.0	"	n	11	"	н	"	
Anthracene	ND	5.0	"	11	71	н	"	"	
Benzidine	ND	5.0	"	11		11	n	"	
Benzo (a) anthracene	ND	5.0		"	п	11		н	
Benzo (b) fluoranthene	ND	5.0	n		**		н	н	
Benzo (k) fluoranthene	ND	5.0		"	"			**	
Benzo (a) pyrene	ND	5.0	n	"		"		W.	
Benzo (g,h,i) perylene	ND	5.0	**	"	11	11		11	
Butyl benzyl phthalate	ND	5.0	"	"		11			
Bis(2-chloroethyl)ether	ND	5.0		•	•	"		30.	
Bis(2-chloroethoxy)methane	ND	5.0	"	0	**	"		и	
Bis(2-ethylhexyl)phthalate	ND	5.0		•	•		n	11	
Bis(2-chloroisopropyl)ether	ND	5.0	"						
4-Bromophenyl phenyl ether	ND	5.0	*	•		"	,	n	
2-Chlorophenol	ND	1.0	n	11	11	11		u	
4-Chloro-3-methylphenol	ND	5.0		н	11	n	n	n	
2-Chloronaphthalene	ND	5.0		н	0	"		"	
4-Chlorophenyl phenyl ether	ND	5.0		"			"	"	
Chrysene	ND	5.0			16	"	n	и	
Dibenz (a,h) anthracene	ND	5.0	n	н	11	n	U	**	
1,3-Dichlorobenzene	ND	5.0	•	н				**	
1,2-Dichlorobenzene	ND	5.0		н	"	**	"	.11	
1,4-Dichlorobenzene	ND	5.0	•	**	**	"		.10	
3,3'-Dichlorobenzidine	ND	5.0	н	,,	•	"		н	
2,4-Dichlorophenol	ND	1.0	n	•		"		H E	
Diethyl phthalate	ND	5.0	n	"			.,		
2,4-Dimethylphenol	ND	1.0	n	н	**	"	,		
Dimethyl phthalate	ND	5.0	n			**	**		
Di-n-butyl phthalate	ND	5.0	н	"	•				
2,4-Dinitrophenol	ND	1.0	n	•	•	"			
2,4-Dinitrotoluene	ND	5.0	n	н	*1	"		**	
2,6-Dinitrotoluene	ND	5.0		**	**	"		n	
Di-n-octyl phthalate	ND	5.0			**				
1,2-Diphenylhydrazine	ND	5.0			**				

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Semivolatile Organics by EPA Method 625.1

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-4-09-08 (2209140-04) Water	Sampled: 09/08/22 11:00	Received: 09/08	/22 14:00	*					
Fluoranthene	ND	5.0	μg/L	1	B2I1301	09/12/22	09/14/22 06:10	EPA 625.1	
Fluorene	ND	5.0	н	u	п	и	•	•	
Hexachlorobenzene	ND	5.0	н	w					
Hexachlorobutadiene	ND	5.0	n		"		•		
Hexachlorocyclopentadiene	ND	5.0	**			н	•		
Hexachloroethane	ND	5.0	п		n	н			
Indeno (1,2,3-cd) pyrene	ND	5.0		10		н	n	**	
Isophorone	ND	5.0		H	II .	п	n		
2-Methyl-4,6-dinitrophenol	ND	5.0		и		н	n	"	
Naphthalene	ND	5.0	n	11			,,	,,	
Nitrobenzene	ND	5.0	н	11	**				
2-Nitrophenol	ND	1.0	m	11	**		n	"	
4-Nitrophenol	ND	1.0	**	н	"	"		11	
N-Nitrosodimethylamine	ND	5.0	**	*		н			
Diphenylamine	ND	5.0	**		,,	n		.,	
N-Nitrosodi-n-propylamine	ND	5.0	**		**		n	0	
Pentachlorophenol	ND	1.0	"	**	"	"		-ŭ	
Phenanthrene	ND	5.0	**	**	,,			ii.	
Phenol	ND	1.0				н			
Pyrene	ND	5.0	н	w		"			
1,2,4-Trichlorobenzene	ND	5.0	н		,,	**		•	
2,4,6-Trichlorophenol	ND	1.0		11			n	**	

CRESTLINE SANITATION DISTRICT ANNUAL REPORT

APPENDIX "B"

Sample Results
Ground Water Monitoring Wells
Final Effluent Disposal Site

Annual Testing

Tests Results for:
Purgable Halocarbons and Aromatics
Base / Neutral / Acid Extractable Organics

Special Quarterly Testing

Disinfection Bi-products
Trihalomethanes (EPA Method 524.2)
Haloacetic Acids (EPA Method 552.2)

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Trihalomethanes by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1-09-08 (2209140-01) Water	Sampled: 09/08/22 10:00	Received: 09/08	ceived: 09/08/22 14:00						
Surrogate: Dibromofluoromethane		117 %	86-	118	B210907	09/09/22	09/09/22 21:11	EPA 524.2	
Surrogate: Toluene-d8		107 %	88-	110	n	"	"	"	
Surrogate: 4-Bromofluorobenzene		113 %	86-	115	n	"	"	"	
Bromodichloromethane	ND	0.500			н	н	n	**	
Bromoform	ND	0.500	n		e e	н		,,	
Chloroform	ND	0.500				**	H		
Dibromochloromethane	ND	0.500				n	16	,,	
Total Trihalomethanes	ND	0.500	n	н		n		н	
MW-2-09-08 (2209140-02) Water	Sampled: 09/08/22 10:20	Received: 09/08	/22 14:00						
Surrogate: Dibromofluoromethane		117 %	86-	118	B2I0907	09/09/22	09/09/22 22:22	EPA 524.2	
Surrogate: Toluene-d8		106 %	88-	110	"	"		"	
Surrogate: 4-Bromofluorobenzene		111 %	86-	115	"	"	"	"	
Bromodichloromethane	ND	0.500			- 11	11		11	
Bromoform	ND	0.500	**	ar :	11	"	,,		
Chloroform	0.770	0.500			n	**			
Dibromochloromethane	ND	0.500	"	н		u		ч	
Total Trihalomethanes	0.770	0.500	"		**	"	,	11	
MW-3-09-08 (2209140-03) Water	Sampled: 09/08/22 10:40	Received: 09/08	/22 14:00						
Surrogate: Dibromofluoromethane		118 %	86-	118	B210907	09/09/22	09/09/22 22:57	EPA 524.2	
Surrogate: Toluene-d8		106 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		113 %	86-	115	"	"	"	"	
Bromodichloromethane	ND	0.500	"	**		"			
Bromoform	ND	0.500	"		N	н	n	w -	
Chloroform	ND	0.500	"	**		"		,,	
Dibromochloromethane	ND	0.500			n				
Total Trihalomethanes	ND	0.500			.,				

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Trihalomethanes by EPA Method 524.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4-09-08 (2209140-04) Water	Sampled: 09/08/22 11:00	Received: 09/08/22 14:00					# E		
Surrogate: Dibromofluoromethane		115 %	86-	118	B210907	09/09/22	09/09/22 23:33	EPA 524.2	
Surrogate: Toluene-d8		109 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		115 %	86-1	115	H	**	"	n	
Bromodichloromethane	ND	0.500	n	Ð	14	n	"	н	
Bromoform	ND	0.500	"	н		"		"	
Chloroform	ND	0.500	n		10		п	11	
Dibromochloromethane	ND	0.500	н		**		n	n	
Total Trihalomethanes	ND	0.500	н	16	**	,,		11	

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Haloacetic Acids (GC/ECD) by EPA Method 552.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
MW-1-09-08 (2209140-01) Water	Sampled: 09/08/22 10:00	Received: 09/08	Received: 09/08/22 14:00						
Surrogate: 2,3-Dibromopropionic A	97.6%	60-	150	B211205	09/12/22	09/13/22 09:45	EPA 552.3		
Monochloroacetic Acid	ND	2.00	**	11			**	"	
Dichloroacetic Acid	ND	1.00		11		н	•	u .	
Trichloroacetic Acid	ND	1.00	•	"	"		n		
Monobromoacetic Acid	ND	1.00		"			n	"	
Dibromoacetic Acid	ND	1.00			•		n	II .	
Total Haloacetic Acids	ND	1.00			11	"	н	п	
MW-2-09-08 (2209140-02) Water	Sampled: 09/08/22 10:20	Received: 09/08	3/22 14:00						
Surrogate: 2,3-Dibromopropionic A	cid	110 %	60-	150	B211205	09/12/22	09/13/22 09:45	EPA 552.3	
Monochloroacetic Acid	ND	2.00	n		"			•	
Dichloroacetic Acid	ND	1.00		11			•	"	
Trichloroacetic Acid	ND	1.00	n	ж	"	•	•	u u	
Monobromoacetic Acid	ND	1.00	n	n	"		••	**	
Dibromoacetic Acid	ND	1.00		н	**	"	- m		
Total Haloacetic Acids	ND	1.00			*	н	€••		
MW-3-09-08 (2209140-03) Water	Sampled: 09/08/22 10:40	Received: 09/08	3/22 14:00						
Surrogate: 2,3-Dibromopropionic A	cid	103 %	60-	150	B2I1205	09/12/22	09/13/22 09:45	EPA 552.3	
Monochloroacetic Acid	ND	2.00	n			"	n	H .	
Dichloroacetic Acid	ND	1.00	n					и —	
Trichloroacetic Acid	ND	1.00							
Monobromoacetic Acid	ND	1.00	n	W.		"	n .	n	
Dibromoacetic Acid	ND	1.00	n	11.	"	**	n		
Total Haloacetic Acids	ND	1.00	,,			**			

P.O. Box 3395

Crestline CA, 92325-3395

Project: Las Flores Ranch

Project Number: Monitoring Wells Annual Samples

Project Manager: Ron Scriven

Reported: 09/14/22 12:11

Haloacetic Acids (GC/ECD) by EPA Method 552.2

Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
MW-4-09-08 (2209140-04) Water	Sampled: 09/08/22 11:00	Received: 09/08	eceived: 09/08/22 14:00							
Surrogate: 2,3-Dibromopropionic A	cid	109 %	60-150		B211205	09/12/22	09/13/22 09:45	EPA 552.3		
Monochloroacetic Acid	ND	2.00			"			•		
Dichloroacetic Acid	ND	1.00	н	n -	n			w		
Trichloroacetic Acid	ND	1.00	**	т н	0		*			
Monobromoacetic Acid	ND	1.00	,	,						
Dibromoacetic Acid	ND	1.00			n.	"				
Total Haloacetic Acids	ND	1.00		,,	,,	н	n	n		